
pgctl Documentation
Release 3.0.1

Buck Evan

Oct 25, 2017

Contents

1 Introduction 3

2 Feature Support 5

3 User Guide 7
3.1 Installation . 7
3.2 Quickstart . 8
3.3 Sub-Commands . 9
3.4 Advanced Usage . 10

4 API Documentation 13
4.1 API Documentation . 13

5 Contributor Guide 17
5.1 Contributor’s guide . 17
5.2 Design Rationale . 19
5.3 Bug Log . 20

Python Module Index 21

i

ii

pgctl Documentation, Release 3.0.1

Issues | Github | PyPI

Release v3.0. (Installation)

Contents 1

https://github.com/yelp/pgctl/issues
https://github.com/yelp/pgctl
https://pypi.python.org/pypi/pgctl/

pgctl Documentation, Release 3.0.1

2 Contents

CHAPTER 1

Introduction

pgctl is an MIT Licensed tool to manage developer “playgrounds”.

Often projects have various processes that should run in the backround (services) during development. These services
amount to a miniature staging environment that we term playground. Each service must have a well-defined state at
all times (it should be starting, up, stopping, or down), and should be independantly restartable and debuggable.

pgctl aims to solve this problem in a unified, language-agnostic framework (although the tool happens to be written
in Python).

As a simple example, let’s say that we want a date service in our playground, that ensures our now.date file always has
the current date.

$ cat playground/date/run
date > now.date

$ pgctl start
$ pgctl status
date -- up (0 seconds)

$ cat now.date
Fri Jun 26 15:21:26 PDT 2015

$ pgctl stop
$ pgctl status
date -- down (0 seconds)

3

https://github.com/Yelp/pgctl/blob/master/COPYING

pgctl Documentation, Release 3.0.1

4 Chapter 1. Introduction

CHAPTER 2

Feature Support

• User-friendly Command Line Interface

• Simple Configuration

• Python 2.7—3.5

5

pgctl Documentation, Release 3.0.1

6 Chapter 2. Feature Support

CHAPTER 3

User Guide

This part of the documentation covers the step-by-step instructions and usage of pgctl for getting started quickly.

Installation

This part of the documentation covers the installation of pgctl. The first step to using any software package is getting
it properly installed.

Distribute & Pip

Installing pgctl is simple with pip, just run this in your terminal:

$ pip install pgctl

Get the Code

pgctl is actively developed on GitHub, where the code is always available.

You can either clone the public repository:

$ git clone git://github.com/yelp/pgctl.git

Download the tarball:

$ curl -OL https://github.com/yelp/pgctl/tarball/master

Or, download the zipball:

$ curl -OL https://github.com/yelp/pgctl/zipball/master

7

https://pip.pypa.io
https://github.com/Yelp/pgctl
https://github.com/yelp/pgctl/tarball/master
https://github.com/yelp/pgctl/zipball/master

pgctl Documentation, Release 3.0.1

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

$ python setup.py install

Quickstart

This page attempts to be a quick-and-dirty guide to getting started with pgctl.

Setting up

The minimal setup for pgctl is a playground directory containing the services you want to run. A service consists
of a directory with a run script. The script should run in the foreground.

$ cat playground/date/run
date > now.date

Once this is in place, you can start your playground and see it run.

$ pgctl start
$ pgctl log
[webapp] Serving HTTP on 0.0.0.0 port 36474 ...

$ curl

Writing Playground Services

pgctl works best with a single process. When writing a run script in bash, use the exec statement to replace the
shell with your process. This avoids a process tree with bash as the parent of your service. Having a single process
allows simple management of state and proper signalling for stopping the service.

Bad: (don’t do this!)

#!/bin/bash
sleep infinity # creates a new process

Good: (do it this way!)

#!/bin/bash
exec sleep infinity # replaces the *current* process

Without the exec, stopping the service will kill bash but the sleep process will be left behind. This kind of process-
tree management is too complex for pgctl to auto-magically fix it for you, but it will let you know if it becomes a
problem:

$ pgctl restart
Stopping: sleeper
Stopped: sleeper
ERROR: We sent SIGTERM, but these processes did not stop:

USER PID ACCESS COMMAND
playground/sleeper: buck 2847827 f.c.. sleep

To fix this temporarily, run: pgctl stop sleeper --force

8 Chapter 3. User Guide

pgctl Documentation, Release 3.0.1

To fix it permanently, see:
http://pgctl.readthedocs.org/en/latest/user/quickstart.html#writing-playground-

→˓services

Aliases

With no arguments, pgctl start is equivalent to pgctl start default. By default, default maps to a
list of all services. You can configure what default means via pgctl.yaml:

aliases:
default:

- service1
- service2

You can also add other aliases this way. When you name an alias, it simply expands to the list of configured services,
so that pgctl start A-and-B would be entirely equivalent to pgctl start A B.

Sub-Commands

pgctl has eight basic commands: start, stop, restart, debug, status, log, reload, config

Note: With no arguments, pgctl <cmd> is equivalent to pgctl <cmd> default. By default, default maps to
all services. See Aliases.

start

$ pgctl start <service=default>

Starts a specific service, group of services, or all services. This command is blocking until all services have success-
fully reached the up state. start is idempotent.

stop

$ pgctl stop <service=default>

Stops a specific service, group of services, or all services. This command is blocking until all services have successfully
reached the down stated. stop is idempotent.

restart

$ pgctl restart <service=default>

Stops and starts specific service, group of services, or all services. This command is blocking until all services have
successfully reached the down stated.

3.3. Sub-Commands 9

pgctl Documentation, Release 3.0.1

debug

$ pgctl debug <service=default>

Runs a specific service in the foreground.

status

$ pgctl status <service=default>
<service> (pid <PID>) -- up (0 seconds)

Retrieves the state, PID, and time in that state of a specific service, group of services, or all services.

log

$ pgctl log <service=default>

Retrieves the stdout and stderr for a specific service, group of services, or all services.

reload

$ pgctl reload <service=default>

Reloads the configuration for a specific service, group of services, or all services.

config

$ pgctl config <service=default>

Prints out a configuration for a specific service, group of services, or all services.

Advanced Usage

You may (or may not) want these notes after using pgctl for a while.

Services that stop slowly

When you have a service that takes a while to stop, pgctl may incorrectly error out saying that the service left processes
behind. By default, pgctl only waits up to two seconds. To tell pgctl to wait a bit longer write a number of seconds
into a timeout-stop file.

$ echo 10 > playground/uwsgi/timeout-stop
$ git add playground/uwsgi/timeout-stop

10 Chapter 3. User Guide

pgctl Documentation, Release 3.0.1

Services that start slowly

Similarly, if pgctl needs to be told to wait longer to start your service, write a timeout-ready file.

If there’s a significant period between when the service has started (up) and when it’s actually doing it’s job (ready),
or if your service sometimes stops working even when it’s running, create a runnable ready script in the service
directory and prefix your service command with our pgctl-poll-ready helper script. pgctl-poll-ready
will run the ready script repeatedly to determine when your service is actually ready. As an example:

$ cat playground/uwsgi/run
make -C ../../ minimal # the build takes a few seconds
exec pgctl-poll-ready ../../bin/start-dev

$ cat playground/uwsgi/ready
exec curl -s localhost:9003/status

$ cat playground/uwsgi/timeout-ready
30

Handling subprocesses in a bash service

If you’re unable to use exec to create a single-process service, you’ll need to handle SIGTERM and kill off your
subprocesses yourself. In bash this is tricky. See the example in our test suite for an example of how to do this
reliably:

https://github.com/Yelp/pgctl/blob/master/tests/examples/output/playground/ohhi/run

3.4. Advanced Usage 11

https://github.com/Yelp/pgctl/blob/master/tests/examples/output/playground/ohhi/run

pgctl Documentation, Release 3.0.1

12 Chapter 3. User Guide

CHAPTER 4

API Documentation

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

API Documentation

This is automatically generated documentation from the source code. Generally this will only be useful for developers.

Submodules

pgctl.cli module

class pgctl.cli.PgctlApp(config=<frozendict {u’force’: False, u’verbose’: False, u’pgdir’:
u’playground’, u’json’: False, u’timeout’: u‘2.0’, u’services’: (u’default’,
), u’poll’: u’.01’, u’pghome’: u’~/.run/pgctl’, u’aliases’: <frozendict
{u’default’: (u’(all services)’,)}>}>)

Bases: object

all_services
Return a list of all services.

Returns list of Service objects

Return type list

commands = (<function start>, <function stop>, <function status>, <function restart>, <function reload>, <function log>, <function debug>, <function config>)

config()
Print the configuration for a service

debug()
Allow a service to run in the foreground

log(interactive=None)
Displays the stdout and stderr for a service or group of services

13

https://docs.python.org/2/library/functions.html#object

pgctl Documentation, Release 3.0.1

pgdir
Retrieve the set playground directory

pghome
Retrieve the set pgctl home directory.

By default, this is “$XDG_RUNTIME_DIR/pgctl”.

playground_locked(*args, **kwds)
Lock the entire playground.

reload()
Reloads the configuration for a service

restart()
Starts and stops a service

service_by_name(service_name)
Return an instantiated Service, by name.

service_names

services
Return a tuple of the services for a command

Returns tuple of Service objects

start()
Idempotent start of a service or group of services

status()
Retrieve the PID and state of a service or group of services

stop(with_log_running=False)
Idempotent stop of a service or group of services

Parameters with_log_running – controls whether the logger associated with

this service should be stopped or left running. For restart cases, we want to leave the logger running (since
poll-ready may still be writing log messages).

with_services(services)
return a similar PgctlApp, but with a different set of services

class pgctl.cli.Start(service)
Bases: pgctl.cli.StateChange

assert_()

change()

fail()

get_timeout()

is_user_facing = True

class strings
Bases: object

change = u’start’

changed = u’Started:’

changing = u’Starting:’

14 Chapter 4. API Documentation

https://docs.python.org/2/library/functions.html#object

pgctl Documentation, Release 3.0.1

class pgctl.cli.StateChange(service)
Bases: object

class pgctl.cli.StateChangeResult
Bases: object

FAILURE = 1

RECHECK_NEEDED = 2

SUCCESS = 0

class pgctl.cli.Stop(service)
Bases: pgctl.cli.StateChange

assert_()

change()

fail()

get_timeout()

is_user_facing = True

class strings
Bases: object

change = u’stop’

changed = u’Stopped:’

changing = u’Stopping:’

class pgctl.cli.StopLogs(service)
Bases: pgctl.cli.StateChange

assert_()

change()

fail()

get_timeout()

is_user_facing = False

class strings
Bases: object

change = u’stop’

changed = u’Stopped logger for:’

changing = u’Stopping logger for:’

class pgctl.cli.TermStyle
Bases: object

BOLD = u’\x1b[1m’

ENDC = u’\x1b[0m’

GREEN = u’\x1b[92m’

RED = u’\x1b[91m’

YELLOW = u’\x1b[93m’

4.1. API Documentation 15

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

pgctl Documentation, Release 3.0.1

classmethod wrap(text, style)

pgctl.cli.error_message_on_timeout(service, error, action_name, actual_timeout_length,
check_length)

pgctl.cli.main(argv=None)

pgctl.cli.parser()

pgctl.cli.pgctl_print(*print_args, **print_kwargs)
Print to stderr with [pgctl] prepended.

pgctl.cli.timeout(service, start_time, check_time, curr_time)

pgctl.cli.unbuf_print(*args, **kwargs)
Print unbuffered in utf8.

Module contents

16 Chapter 4. API Documentation

CHAPTER 5

Contributor Guide

If you want to contribute to the project, this part of the documentation is for you.

Contributor’s guide

This page helps you make contributions to the pgctl project.

For a quick primer on using github, see https://guides.github.com/activities/contributing-to-open-source/

Developer Environment

To put yourself into our dev environment, run source .activate.sh.

Documentation

If you need to make changes to the documentation, they live under docs/source. For a quick primer on the rst format,
see http://docutils.sourceforge.net/docs/user/rst/quickref.html

If you want to see good examples of other projects’ documentation, see:

• [the Requests docs](https://github.com/kennethreitz/requests/tree/master/docs)

• [the virtualenv docs](https://github.com/pypa/virtualenv/tree/master/docs)

To get a look at your changes, run make docs from the root of the project. This will spin up a http server on port 8088
serving your editted documentation.

Debugging

To get extra debugging output from pgctl, set the PGCTL_VERBOSE environment variable. This will cause any tests
that assert the output of pgctl to fail, but it often helps finding mysterious issues.

17

https://guides.github.com/activities/contributing-to-open-source/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://github.com/kennethreitz/requests/tree/master/docs
https://github.com/pypa/virtualenv/tree/master/docs

pgctl Documentation, Release 3.0.1

Run tests

• make test ## (should Just Work)

• tox -e test ## lose proper –recreate logic

• ./test ## python must have all test deps

• py.test ## lose coverage and linting

Filter which tests to run

• make test ARGS=’-k “test and stop”’

• tox -e test – ‘-k “test and stop”’

• ./test -k “test and stop”

• py.test tests -k “test and stop”

Run a particular test

• py.test tests/main_test.py::test_stop

Coverage reports should show all project files as well as test files.

Looking at Coverage

It’s good practice to look at unit coverage separately from spec coverage. First,

make unit test

or:

make spec test

And in a separate terminal:

make coverage-server

Complications

These are the things that make things more complicated than they (seem to) need to be.

A broken setup.py should cause failing tests. Many projects’ testing setup will blissfully pass even if setup.py does
nothing whatsoever. In order to avoid this, I use changedir in my tox.ini. Most of the other complexity comes from
this. For example, because I run the code that’s inside the virtualenv during test, it’s fiddly to get coverage to report on
the right copy of the code.

Subprocess coverage is complicated. coveragepy has some built-in support for this, but it’s not enabled by default.
The script at tests/testing/install_coverage_pth.py does the necessary addtional work to enable the subprocess coverage
feature. Because several coverage runs may be running concurrently, we must be careful to always use coverage in
“parallel mode” and run coverage combine afterward.

18 Chapter 5. Contributor Guide

pgctl Documentation, Release 3.0.1

Design Rationale

Directory Structure

$ pwd
/home/<user>/<project>

$ tree playground/
playground/
- service1
| - down
| - run
| - stderr.log
| - stdout.log
| - supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service1/supervise
- service2
| - down
| - run
| - stderr.log
| - stdout.log
| - supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service2/supervise
- service3

- down
- run
- stderr.log
- stdout.log
- supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service3/supervise

There are a few points to note: logging, services, state, symlinking.

logging

stdin and stdout will be captured from the supervised process and written to log files under the service directory. The
user will be able to use the pgctl log command to aggregate these logs in a readable form.

services

All services are located under the playground directory.

state

We are using s6 for process management and call the s6-supervise command directly. It was a design decision to
not use svscan to automatically supervise all services. This was due to inflexability with logging (by default stdout
is only logged). To ensure that every service is in a consistent state, a down file is added to each service directory (man
supervise) if it does not already exist.

symlinking

Currently pip install . calls shutil.copy to copy all files in the current project when in the project’s base direc-
tory. Having pipes present in the projects main directory attempts to copy the pipe and deadlocks. To remedy this
situation, we have symlinked the supervise directory to the user’s home directory to prevent any pip issues.

5.2. Design Rationale 19

pgctl Documentation, Release 3.0.1

–force option

--force takes effect only upon pgctl stop, not pgctl start. --force implies that pgctl would try what-
ever it can to accomplish a task. This would not apply to pgctl start under many cases. For example, if a service
takes 30 minutes to warm itself up before ready, pgctl cannot force it to start up within a short period of time. Instead,
users should take the responsibility to adjust the timeout value.

Design Decisions

Design of debug

Unsupervise all things when down

Bug Log

This documents current and past bugs in the project. This is helpful when during future debugging sessions.

Current bugs – 2015-10-26

Currently the coverage report improperly shows missing coverage, but only under jenkins / circleCI. Local testing and
travis don’t seem to have this issue.

I’ve found some clues:

• only lines run directly by the xdist workers goes missing; all subprocess coverage is reliable.

• the xdist worker does write out its coverage file on time, it’s just (mostly) empty.

• from looking at the coverage debugging trace: the coverage drops out at this line: https://bitbucket.org/
hpk42/execnet/src/50f88cb892d/execnet/gateway_base.py#gateway_base.py-1072

• TODO: does this reproduce using coverage<4.0 ?

Circle CI debugging

To grab files from a circleCI run: (for example)

rsync -Pav -e ‘ssh -p 64785’ ubuntu@54.146.184.147:pgctl/coverage.bak.2015-10-
24_18:28:36.937047774 .

20 Chapter 5. Contributor Guide

https://bitbucket.org/hpk42/execnet/src/50f88cb892d/execnet/gateway_base.py#gateway_base.py-1072
https://bitbucket.org/hpk42/execnet/src/50f88cb892d/execnet/gateway_base.py#gateway_base.py-1072
mailto:ubuntu@54.146.184.147

Python Module Index

p
pgctl, 16
pgctl.cli, 13

21

pgctl Documentation, Release 3.0.1

22 Python Module Index

Index

A
all_services (pgctl.cli.PgctlApp attribute), 13
assert_() (pgctl.cli.Start method), 14
assert_() (pgctl.cli.Stop method), 15
assert_() (pgctl.cli.StopLogs method), 15

B
BOLD (pgctl.cli.TermStyle attribute), 15

C
change (pgctl.cli.Start.strings attribute), 14
change (pgctl.cli.Stop.strings attribute), 15
change (pgctl.cli.StopLogs.strings attribute), 15
change() (pgctl.cli.Start method), 14
change() (pgctl.cli.Stop method), 15
change() (pgctl.cli.StopLogs method), 15
changed (pgctl.cli.Start.strings attribute), 14
changed (pgctl.cli.Stop.strings attribute), 15
changed (pgctl.cli.StopLogs.strings attribute), 15
changing (pgctl.cli.Start.strings attribute), 14
changing (pgctl.cli.Stop.strings attribute), 15
changing (pgctl.cli.StopLogs.strings attribute), 15
commands (pgctl.cli.PgctlApp attribute), 13
config() (pgctl.cli.PgctlApp method), 13

D
debug() (pgctl.cli.PgctlApp method), 13

E
ENDC (pgctl.cli.TermStyle attribute), 15
error_message_on_timeout() (in module pgctl.cli), 16

F
fail() (pgctl.cli.Start method), 14
fail() (pgctl.cli.Stop method), 15
fail() (pgctl.cli.StopLogs method), 15
FAILURE (pgctl.cli.StateChangeResult attribute), 15

G
get_timeout() (pgctl.cli.Start method), 14
get_timeout() (pgctl.cli.Stop method), 15
get_timeout() (pgctl.cli.StopLogs method), 15
GREEN (pgctl.cli.TermStyle attribute), 15

I
is_user_facing (pgctl.cli.Start attribute), 14
is_user_facing (pgctl.cli.Stop attribute), 15
is_user_facing (pgctl.cli.StopLogs attribute), 15

L
log() (pgctl.cli.PgctlApp method), 13

M
main() (in module pgctl.cli), 16

P
parser() (in module pgctl.cli), 16
pgctl (module), 16
pgctl.cli (module), 13
pgctl_print() (in module pgctl.cli), 16
PgctlApp (class in pgctl.cli), 13
pgdir (pgctl.cli.PgctlApp attribute), 13
pghome (pgctl.cli.PgctlApp attribute), 14
playground_locked() (pgctl.cli.PgctlApp method), 14

R
RECHECK_NEEDED (pgctl.cli.StateChangeResult at-

tribute), 15
RED (pgctl.cli.TermStyle attribute), 15
reload() (pgctl.cli.PgctlApp method), 14
restart() (pgctl.cli.PgctlApp method), 14

S
service_by_name() (pgctl.cli.PgctlApp method), 14
service_names (pgctl.cli.PgctlApp attribute), 14
services (pgctl.cli.PgctlApp attribute), 14
Start (class in pgctl.cli), 14

23

pgctl Documentation, Release 3.0.1

start() (pgctl.cli.PgctlApp method), 14
Start.strings (class in pgctl.cli), 14
StateChange (class in pgctl.cli), 14
StateChangeResult (class in pgctl.cli), 15
status() (pgctl.cli.PgctlApp method), 14
Stop (class in pgctl.cli), 15
stop() (pgctl.cli.PgctlApp method), 14
Stop.strings (class in pgctl.cli), 15
StopLogs (class in pgctl.cli), 15
StopLogs.strings (class in pgctl.cli), 15
SUCCESS (pgctl.cli.StateChangeResult attribute), 15

T
TermStyle (class in pgctl.cli), 15
timeout() (in module pgctl.cli), 16

U
unbuf_print() (in module pgctl.cli), 16

W
with_services() (pgctl.cli.PgctlApp method), 14
wrap() (pgctl.cli.TermStyle class method), 15

Y
YELLOW (pgctl.cli.TermStyle attribute), 15

24 Index

	Introduction
	Feature Support
	User Guide
	Installation
	Quickstart
	Sub-Commands
	Advanced Usage

	API Documentation
	API Documentation

	Contributor Guide
	Contributor's guide
	Design Rationale
	Bug Log

	Python Module Index

